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Abstract

We study the metric of minimal area on a punctured Riemann surface under the
condition that all nontrivial homotopy closed curves be longer than or equal to 2m.
By constructing deformationsof admissible metrics we establish necessaryconditions
on minimal area metrics and a partial converse to Beurling’s criterion for extremal
metrics. We explicitly construct new minimal area metrics that do not arise from
quadraticdifferentials. Under the physically motivated assumptionof existenceof the
minimal areametrics,we show thereexist neighborhoodsof the puncturesisometric to

a flat semi-infinite cylinder of circumference27r, allowing the definition of canonical
complex coordinatesaround the punctures. The plumbing of surfaces with minimal
areametricsis shownto induce a metric of minimal areaon the resulting surface.This
implies that minimal area string diagrams define a consistent quantum closed string
field theory.
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1. Introduction and summary

The motivation for the presentwork is a minimal areaproblem for Rie-
mannsurfaces.Givena Riemannsurface7~.the problemasksfor the conformal
metric of least possibleareaunder the condition that all homotopicallynon-
trivial closedcurveson the surfacebe longer than or equalto a fixed length,
conventionally takento be 2ir [Zwl 1. The surface7?. is a surfaceof genus
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g > 0 with n � 0 markedpoints, or punctures,andthe homotopy type of the
curves is relativeto the punctures.The casesof Riemannsphereswith one or
no puncturesmust be excludedsince thesesurfaceshaveno nontrivial closed
curves.

This generalizedminimal areaproblemcanbe viewedas an extremal length
problem.As is well known,extremallength problemsin Riemannsurfacesbegin
with the specificationof a family F of curves in a surface [Ah,Beu,Ga]. The
extremallength, which is a conformal invariant, dependson the choice of the

family F. The presentproblem,as will be explainedin Section2, is equivalent
to an extremallength problemwhereF is the set of all nontrivial closedcurves
in the surface.As such,the extremallength will be a function of the moduli of

the surfaceonly. This problem can also be viewed as a generalizationof the
minimal areaproblemsstudied earlier by Jenkinsand Strebel [Je,St] where
the length conditionsapply to curveshomotopicto a finite set of curves,called
an admissibleset, containingnon-intersecting,non-homotopic,and nontrivial
simple closedJordan curves. Different length conditions may apply for the
different homotopytypes. In the presentproblem we imposethe same length
condition on all nontrivial closed curves.~ In other words the unique length
conditionappliesto curveshomotopicto a curve in the infinite set containing
a representativefrom every homotopy class.The curves in this set intersect
anddo not makean admissibleset.

The solution of the generalizedminimal area problem is known for all
Riemannspheres(g = 0; n > 2), namely,all surfacesin the Riemannmoduli
spaces)vlg=o,n, and for a subsetof every Mg.n for g > 1 [Zwl]. The metrics
arisefrom Jenkins—Strebel(JS) quadraticdifferentials (quadraticdifferentials
with closed horizontal trajectories)with secondorder poles at the punctures

andwith characteristicring domainsthat include a punctureddisc aroundeach
puncture,anda variablenumberof internalannuli. Thehorizontaltrajectories,
all of which are of length 2m, completelyfoliate the surface.and aregeodesics
that saturatethe length,conditions.We do notpresentlyknow the minimal area
metrics for some subsetsof every )vlg.n (with the exceptionof g = 1, n = 0).
There was some evidence that the minimal area metrics would not arise
from JS-quadraticdifferentials [Zw2j, and in Section 6 we describesuch an
example.~

The relevanceof the generalizedminimal area problem for physics arises
in the context of developinga secondquantizedfield theory of closedstrings
[SaZw,KKS,KS]. The existenceof sucha field theorydemands,roughly speak-
ing, that we find for every Mg,n (exceptg = 0; n = 0, 1), a subsetVgn, and

It is actually sufficient to consider all nontrivial simple Jordan closed curves [Zw3], since
nontrivial curves with self intersectionswill satisfy the length condition once all simple closed
curvesdo.
~ The specificmetricsconjecturedin Ref. lZw2} to give suchan exampleare now known not to
be of minimal area.
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for each surfacein this subsetwe must specify a local coordinatez1 around
each of the punctures(this coordinateis specifiedonly up to a phase).The
subsetsV define the vertices of the field theory.The fundamentalconstraint
theymustsatisfy is the following: if weglue togetherthe surfacesin the subsets
V, via the plumbing relationsz~w~= t with ti < 1, andobeying the combi-
natorial rules of Feynmandiagrams,we mustgeneratepreciselythe complete
moduli spacesMg,n [SoZw,Zw41. The metricssolvingthe generalizedminimal
areaproblemare expectedto determinethe subsetsV and tell us how to put
coordinatesaroundthe puncturesof the correspondingsurfaces[Zw2 1. Basi-
cally, the minimalareametric is expectedto be isometricto a flat semi-infinite
cylinder aroundeachpuncture,this flatnessrequirementallowing us to define
a canonicalcoordinate.Since areais additive, the plumbingof minimal area
metrics is expectedto induce in the plumbedsurfacea minimal areametric.
This is true if minimal areametricssatisfyan amputationproperty [Zw2]: am-
putationof the semi-infinitecylinder associatedto a puncturealonga geodesic
must induce on the truncatedsurfacea metric of minimal area. If plumbed
surfacesacquireminimal areametrics,the uniquenessof minimal areametrics
[St,Zwl I will imply that Feynmanrules will not generateany surfacemore
than once. The V’s are definedto be the surfacesthat are not generatedby
the sewingprocedure.Thereis a moreexplicit descriptionof V in termsof the
heights of foliations in the metric of minimal area [Zw5 I (see also Remark
5.7).

The relevanceof the generalizedminimal area problem for mathematics
arisesfrom the possibilityof parametrizingthe moduli spacesof surfaces,and
in particular, the compactificationdivisors of moduli spacein a canonical
and geometricalway. Now, the Deligne—Mumford compactificationMg of
the moduli spaceof surfacesMg (g > 1) consistsof a union of the moduli
spaceof surfaceswith a compactifyingset of nodedRiemannsurfaces,i.e. con-
nectedcomplexspaceswherepointshaveneighborhoodscomplexisomorphic
to either {izi < c} (regularpoints) or {zw = 0; izi < c,iwi < e} (nodes),
and for which eachcomponentof the complementof the nodeshasnegative
Euler characteristic(note that the complementof the nodesis a collection
of surfaceswith pairedpunctures).The topology of the compactificationand
a parametrizationof neighborhoodsof points representingnodedsurfacesin

are given by the processof conformal plumbing or “opening of a node”
(seeRefs. [Mas,EM,Ber]); we describethe processfor a neighborhoodin

7~g
of a surface7?.~with a single node, leaving the generalcaseto the reader.To
begin, for ti < E we removea small neighborhoodU = {izi < ti, wi < ti} of
the node in the nodedRiemannsurface7?.~and form the identification space

= (7?.o — U)/(zw = t). We observethat 7?.~is a smoothcompactRiemann
surface.The topology of ~g is then definedso thatpoints in A~gwhich are
nearl?.~~are either thosenodedsurfaceswhich are quasiconformallyclose to
R~,or thosesmooth surfaceswhich are the result of openingthe node (with
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smallopeningparametert ~ 0) of nodedsurfacesquasiconformallynear7?.o.
Now, thesecoordinateswe havedescribedare not canonically defined, in-

volving a choiceof a neighborhoodU. However, one of the goalsin this paper
is to show that, for extremalmetrics that are completeand sufficiently smooth
in a sufficiently large neighborhoodof the puncture,we can makethe above
processof openingthe nodesomewhatmore canonical:therewill be a maximal
neighborhoodof the puncturewhich is flat andfoliated by geodesicsof length
2m homotopic to the punctures.Taking this neighborhoodto be a disk of
radius one, where the geodesicsare the circles of constantradius, we define
7?.~in a mannerthat dependsonly on the choiceof thatparticularpoint of the
boundaryof the disk that should representz = 1. (In this choice, we must
havean ambiguity as to the a-argumentof that point becauseof the topology
of T*j~ig,(see Ref. [W, Remark4.1, p. 5251). Moreover, our resultsimply
that the minimal areametric on the smoothsurface7?~,for tJ < exp(—m), is
preciselythe metric inducedon 7?.~by the identification process.Thus minimal
areametrics areconsistentwith the conformalprocessof openinga node, and
dually, with degenerationin ~ (pinching off a curve to obtain a noded
surface).In physicsthistranslatesinto manifestoff-shell factorizationof string
amplitudes,an essentialpropertyof covariant field theory.

Sinceminimal areametricswill not arisealwaysfrom quadraticdifferentials,
we expectto find a naturaland interestinggeneralizationof quadraticdiffer-
entials.We remark that thereis presentlyno known assignmentof quadratic
differentials to all surfacesconsistentwith degeneration.Moreover, the min-
imal area problem applies to surfaces without punctures,where quadratic
differentials do not yield decompositionsof the correspondingmoduli spaces
(see Ref. [Hal). The overall goal is for minimal area metrics to give a de-
compositionof all moduli spaces.Each moduli spacewould be broken into
the piecesgeneratedby the differentpatternsof foliations, thesepiecesroughly
correspondto the various Feynmangraphsof the string field theory. More
explicit knowledge of the minimal area metrics may be necessaryto decide
whetherthe decompositionis actually a cell decomposition.This is the case
for the moduli spaces~ [Zwl ].

The goal of the presentwork is to provide a mathematicalframework for
the generalizedminimal areaproblem. We establisha useful partial converse
to a criterion of Beurling for extremal metrics. This amountsto necessary
conditionsfor extremalmetrics. In this paperwe do not prove the existenceof
the minimal areametric on an arbitrary Riemannsurface.The aboveresults
allow us to give, assumingthe existenceof a completeminimal areametric
smooth in someneighborhoodof eachpuncture,a proof of the requirements
of flatnessandamputation.This amountsto establishing(modulo existence)
that the minimal areametricsdefine a quantumclosed string field theory.

We havebeenable to obtain someminimal areametrics solving our prob-
lem that do not arisefrom quadraticdifferentials. The new property is that



M. Wolf B. Zwiebach/Journal of Geometryand Physics15 (1994)23—56 27

foliations by geodesicsof length 2ir that coverthe surfacemust intersectover
regionsof non-zeromeasure.Sincethesemetrics arequite novel, andprovide
furtherevidenceof existenceof the minimal areametricfor arbitraryRiemann
surfaces,we will presentthem in Section 6.

The contentsof this paperareorganizedas follows. In Section 2 we discuss
preliminaries andnotation.We explain the relation with extremal length and
the notion of saturatinggeodesics.It is shown thatfor a completeminimalarea
metric, smoothandnonvanishingin someneighborhoodsof the puctures,we
havea foliation by saturatinggeodesicsaroundthe punctures.In Section3 we
prove a lemmathatamountsto a (partial) local converseto Beurling’scriterion
[Beu]. While Beurling’s criterion is a sufficientcondition for a metric to be of
minimal area, our conversegives necessaryconditions.Roughly speaking,the
necessaryconditionsapplyif aminimalareametric P0 is smoothon a compact
domain which is foliated by saturatinggeodesicsy1. Then, for any smoothh
in this domain such that f., hldzi > 0, one must have f hp0dxdy> 0. Here
the saturatinggeodesicsmaybelongto a finite numberof homotopyclassesof
curves. Using this criterion we showflatnessnearthe puncturesin Section 4.
The proofof amputationis given in Section 5, wherewe also review the proof

that sewing of minimal areametrics yield minimal areametrics [Zw2I. The
new minimal areametrics which do not correspondto quadraticdifferentials
aregiven in Section 6.

In an interestingpaper K. Ranganathan[Ral has independentlyfound a
criterion for minimal area metrics in regionsfoliated by a single homotopy
classof geodesics.His result, as we will see,also establishesflatnessaround
the punctures.Sincethe lemmapresentedin Section 3 since doesnot assume
a single foliation, it may be useful to determineif regionsof the surfacewith
multiple foliations are also flat.

2. Preliminarynotions

We will be concernedthroughout with conformal metrics on Riemann
surfaces.A (conformal) metric p(z)id:i must be invariantly defined, i.e.
p(zi)Idzii = p(z2)idz2i,where z1 and z2 are local parameters.The confor-
mal factor p mustbe measurableandnon-negativeeverywhere.The length of
a curve y, denotedas l~(y) is given by f~pidzi, and the areaof the metric
p is given by j’ f p

2 dxdy. Both length andareaare invariantly defined.The
minimal areaproblemwe are consideringis the following [Zwl I:

GeneralizedMinimal Area Problem. Given a genus g Riemannsurface, with
n � 0 punctures (n > 2 for g = 0) find the metric of minimal area under the
condition that the length of any nontrivial homotopyclosed curve be greater
than or equal to 2ir.
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In the introductionwe have reviewedsomepropertiesof the minimal area
metric. Here we shall concentrateon other aspectsof this problem,of direct
relevancefor our presentwork.

Whenevertherearepuncturesthe naive definition of areais not adequatefor
the aboveproblem. One must use the “reducedarea” definedas Ref. [Zwl I
(seealsoRef. [St. Section 3.21)

A(p) = ii~(ffp2 dxdv + 2~nlnr) • (2.1)

R~r)

where n is the numberof puncturesand 7?.(r) denotesthe Riemann surface
obtainedby excising the disks i-ii < r around the punctures.The ~

1’sare
arbitrary (but fixed) local coordinatesvanishingat the punctures.Under a
changeof local coordinatesthe reducedareachangesby a metric independent
constant,and thereforethe notion of a metric of minimal reducedarea is
independentof the choiceof local coordinates.

A metric p is called admissible (for the minimal area problem) if all
nontrivial curves satisfy the length conditions. A curve satisfying the length
conditions will be called a “good” curve: a curve that violates the length
conditionswill be called a Thad” curve. Let us emphasizethat we will always
be dealingwith simpleclosed curves,i.e. curveswithout self-intersections.

Giventwo admissiblemetrics Po and p’ the metric p~= (I — t)po + tp1 is
admissiblefor all t e [0, 11. The reducedareacan be shown to be a strictly
convexfunctional: A(p1) < (1 t)A(po) + IA(p1 ) forte (0,1).This implies
that the metric of minimal reducedareais unique [Zwl 1 ~

Let us now explain the relation to extremallength. Consider,for simplicity.
a genusg surface(g > I) with no punctures(so that we can use arearather
than reducedarea). Given a family F of curveson the surface,the extremal
length A(F) is a conformal invariant definedby

A(F) = supL(p)
2/A(p) , (2.2)

where the supremumis taken over all possiblemetrics, L(p) inf;.ep l
6(Y).

andA(p) is the area.Sincethe extremallength doesnot changeunderp cp.
with c an arbitrary positive constant, it is possible for every p to demand
L(p) = 2it, namely that all curves in F be longer or equalto 27r. Then, it

follows from (2.2) that we must try to makethe area.4 as small as possible.
Thus the metric of leastareaunderthe condition that all curvesin F be longer

than or equalto 2,r (if it exists) will give us the value of A(F). Our minimal
areaproblemsimply correspondsto the casewhen F is the set of all nontrivial
curveson the surface.

This property is well known for the ordinary definition of area. See, for example. K. Strebel
[St I.
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Remark. The quantity f = (2m)2/A(p) for the minimal area metric is ex-
pectedto define an interestingfunction f : ~1gO —~ tI~.It is a function on
moduli spacesince it is uniqueand requiresno choiceof curves.At the com-
pactificationdivisor it is expectedto go to zero since the area must diverge.
Example: it is not hard to show that for g = 1, in terms of the modular
parameter~ in the usual fundamentaldomain —1/2 < t < 1/2, ri > 1 and
Im (r) > 0; the function f is simply f = 1/Tm(r). The torus with least
minimal areahasr = exp(im/3).

An importantnotion for us will be that of saturatinggeodesics.Theseare
the generalization,for our problem, of the closedhorizontal trajectoriesof
Jenkins—Strebelquadraticdifferentials.Theyaresimply the geodesicsof length
2m, namelythegeodesicsthat saturatethelengthconditionsof the minimalarea
problem.We now show that under someconditionsthe saturatinggeodesics
give rise to a foliation.

Lemma 2.1. Considera puncturedRiemannsurface7?. witha completeminimal
area metric p~,smooth and nonvanishingin someneighborhoodN~of each
puncturep

1. Then there is a neighborhoodV1 aroundeach puncturePi which is
foliatedby saturatinggeodesicshomotopicto thepuncture.

Proof Considera puncturep surroundedby a neighborhoodN in which Po
is smooth and non-vanishing.Then let y~c N be an embedded(simple)
closedcurve homotopic to the puncture. Let V be the neighborhoodof the
punctureconsistingof pointswhich are at distancegreaterthan 3m from Yo.
Completenessof the metric guaranteesthe existenceof the neighborhoodV: if
no such neighborhoodcould be found it would meanthat every neighborhood
of the puncturewould containa point whosedistanceto a fixed pointx0 in the
curve Yo is smallerthan 3m + l(yo)/

2, andthen we would havea sequenceof
pointsconvergingto the puncturewhosedistanceto a fixed point is bounded,
in contradictionwith the completenessof Po.

Then we claim that if C is a nontrivial closedcurvewhich intersectsV but
which is not homotopic to Yo, then l~

0(C)> 3m. To see this, notice that C
must intersectyo, and the distancefrom Yo to any point in V is at least 3m.
Thus if thereis a saturatinggeodesicintersectingV it must be homotopic to
the puncture.

We claim that thereis asmoothcurve through q homotopic to p of length
2m. We first observethat theremust be a curvepassingthrough q of length
lessthanor equalto 2m + e, for everyE > 0 [Zw2I; if this werenot true, then
thereis somec suchthat all nontrivial closedcurvesthrough q arelonger than
2m + e. Considerthenan �/3 neighborhoodof q, andset the metric equalto
zero throughoutthis neighborhood.We claim the new metric is admissible.
If any curve becomesshorterthan 2m, it is becauseits portion lying outside
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the neighborhoodis smaller than 2m, but then the nontrivial open subcurve
lying outsidethe neighborhoodcould be madeinto a nontrivial closed curve
by joining its endpointswith q. In this way we would get a curve of length
smallerthan 2m + 2i/3 in contradictionwith the assumptionthat all nontrivial
closedcurvesthrough q hadto be longer than 2m + F.

We considernow a family of curves;‘~~passingthroughq of lengthsless than

2m + 1/n. All of thesecurvesare homotopic to the puncturep. sincethey all
havelengthsless than 3m. Now, extend poiv to a smoothcompleteadmissible

metric Po on 7?. andthen lift this metric to a metric ,3~on the universalcover
7~.Then,by the Hopf—Rinowtheorem,we find a minimal geodesic~ between
the endpointsof a lift ~ of~’~.Of course,this geodesic~ must havelength less
than 2m + I/n. for all n, sinceit is minimizing. Moreover,since ~ will project
to a curve homotopicto the punctureand P0 is admissible,the curve ;‘ must
havelength at least 2m. We concludethat this curve haslength exactly 2m, and

thus, by the argumentsabove, ;‘ lives in N, and is a p0-geodesic.Finally, ;‘ is
smoothat q. since otherwisewe could cut any corner of ;‘ at q and obtain a
curve of length less than 2m, thus showingthat Po is not admissible.

If thereis more thanone saturatinggeodesicthrough q they would haveto
intersectat some finite angle, since in a smooth metric two geodesicsgoing
through the samepoint and having the samefirst derivative must coincide
completely.If two saturatinggeodesicsintersectthey would have to do so at
least at two points. Considerthen two homotopic segmentsdeterminedby
the intersectionpoints. These must have equal lengths, and then, a cut and
pasteargumentshows that the length of the curves could be reducedat the
intersectionpoints. Thus we haveestablishedthe uniquenessof the saturating
geodesicgoingthroughq andthe fact thathomotopicgeodesicscannotintersect.
This implies that the neighborhoodV will be foliated completelyby saturating
geodesicshomotopicto the puncture.

3. The deformation of an admissiblemetric

In this sectionwe will establisha lemmathat describesdeformationsthat
can be madeto admissibleconformal metrics (in a region coveredby a finite
numberof foliations) so that the deformedmetric will remainadmissible.This
lemmaand its corollary will be used in Section 4 to show that if a minimal

area metric were not flat in a neighborhoodof eachpuncture.then we could
flatten it slightly and reduceits area, contradictingthe presumedminimality
of the metric.

Lemma 3.1. Let 7?. hea Rie,’nannsurfaceand P0 an admissiblecompletemetric.
Let h be a smoothconformalmetric (admitting both positive and non-positive
values, and supposethat h has compact support. Let F denote the set of
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saturatinggeodesicspassingthrough supp(h) andsupposethat
(it) for everyyo e F, the set F1~01c F ofcurvesfreely homotopicto Yo cover

supp(h), i.e.,

supphc U ~
~e

for every [Yolrepresentedin F,
(ii~)theoriginal metricPo is smooth(C~)andnon vanishingin a neighborhood

of~ ~
(Ui,) F containson/v a finite numberoffree homotopyclassesofcurves,
(iv) there is a c5o so that if y is a nontrivial closed curve passingthrough

supp(h) with ‘po (y) < 2m + ~ then y is freely homotopicto a curve in F,
(v) fhidzi > Ofor each y ~F.

Then there is an ~ and a constantK independentof~,such that for � < i, the
metric Pi definedb’v

p0po+�h+K�~ , (3.1)

is admissible.Herex is a conformalmetric which equalsP0 on a 2m neighbor-

hoodof supp(h)andvanisheselsewhere.
Proof Let ~3,denotethe truncatedPi metric,

p~=po+�h . (3.2)

Note that the metric ,~is well definedonly if � is small enough (otherwise
the metric could becomenegative).Since the supportof h is compact,over
this support inf(po) existsand is different from zero (see (ii)), and sup hi
existsandis differentfrom zeroor infinity. Onethenchecksthat for � < �0 =

inf(po)/ sup ihi, the metric p0 is well defined.
We mustcheckthat all nontrivial closedcurveson the surfacearestill longer

thanor equalto 2m when the metric changesfrom Po to P�, for � < �0. We
beginby narrowing the spaceof curvesthat must be checked.We now show
that it is sufficient to consideronly thosecurves y~which satisfythe following
four criteria:
(a) y~must intersectsupp(h); otherwiseits length can only increasewhen

going from the P0 to the p metric.
(b) Yo must be contained in supp(x); if it is not, then, becauseof (a) the

part of the curve outside supp(h) must havelength of at least 2m. Since
outsidesupp(h)we havePo > P0, the curve Yi hasp0-lengthat least 2m.

(c) The Po length of y0 must be less or equal to 4m, namely ~ (ye) < 4m.
Supposeit is not, then~ (ye) > 4m. Considernow
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(~o)= f~idz~= f ~po~d~i ; (3.3)

for � < ~ one has

pf /
— > —, so that l~,(;‘~) > ~ j po~d~i> . 4m = 2m , (3.4)
P0 - ‘ -J -

which showsthat the curve ;‘~ will still be longer than 2m in the modified
metric. Thus indeed,we only needto check thosecurves whosePo length

is shorterthan 4m.
(d) The curve y0 is freely homotopic to an elementof F. Note that only if

l,~(ye) < 2m is theresomethingto check,but in this case

lpo(yo) + � f~z~<2m , (3.5)

and so,

l1~0(y~)<2m + � fihi~dzi . (3.6)

The last term above can be bounded

�1ihiJd~= ~f ih/poi P0 idzi ~ � inf(p0) 4m ~ . (3.7)

for � < (~5o/4m)�0.We therefore have l60(y0) < 2m + ó0 and the desired
result is a consequenceof hypothesis (iv). In summary we need only
discusscurvescontainedin the support of x~and homotopic to elements
ofF.

We nowbeginour analysisof the relevantcurves.Sincey~is freely homotopic

to an elementofF and such elementscoversupp(h),thereis a curve y~
which is homotopicto y,.. intersecting~ in at least two distinct points, sayP~
andP2~To see this, observethat by (a) above,~ must intersectthe interior of
supp(h), andso must intersectsome~‘oe F which passesthrough the interior
of supp(h).Then, if ;‘0fly0 consistsof only a singlepoint, by replacingYo with
a nearbycurve of the foliation near Yo~we may assumethat ‘/0 fl if contains
two points.

Let Ao and.4~denotethe arcsof ;‘~andy0, respectively,which passthrough

pi andP2 andare homotopic rel {pl,p7} (see Fig. 1). Our goal is to bound
from belowthe ~b0-lengthof A0 in terms of the ~‘30-length of .4~,say l~,(A0) >

l~(A0) K3�
2,so that we can eventuallybound the ~3

0-lengthof ~‘, in terms

of the /i~-lengthof y0, which by hypothesisexceeds2m.
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Fig. 1. The segmentsA
0 and A’0 make up the p0-geodesicy~.The segmentsA, and A’, make up

the 13,-geodesic.The segmentsA0 and A, are homotopic rel{pi,p2}. InterpolatingbetweenA0 and
A0 we show some~31-geodesicsA1, where ~z = Po + th.

To this end,set ~ = P0 + th andlet A1 denotethe ~3~-geodesicarc connecting
Pi andP2; hereA0 c Yo. We wish to considerl~,(A1) as a function of t, and, in
particular,we wishto differentiatethis function in t. To begin this discussion,
we first needto establishhow A1 varies with t. For this we recall the theorem
of Eells andLemaire [EL, Section4] that for eachpair of pointsPi andP2
connectedby a geodesicarc A0, thereis an �~(dependingon the pair (pl,p2)
as well as h andPo) so that for t < �0, we find a uniquefamily of j31-geodesic
arcsA1 connectingP1 andP2 as long as thereareno non-trivial po-Jacobifields
alongA0 vanishingat the endpoints.Ofcourse,thereareno suchJacobi fields
alongA0, becauseif therewere, then therewould be a non-trivial Jacobifield
along Yo~and we could use such a field to find a curve i~of lower length
than Yo, contradictingthe admissibilityof P0 (see,for exampleRef. [Sp,Vol.
4, Ch. 81 or Ref. [Hi, Ch. 10, Thm. 11]). Thus, we can find such an �~

as describedabove; however, in order to arguefor all extremal arcs A0, we
needan qj that does not dependon any particular A0. To find such an �~,

we usethe compactnessof the spaceof endpoints { (Pi ,P2)} as well as the
smoothdependenceof solutionsof the JacobiequationJ ( V) = 0 upon the
data. More precisely,let N C 7?. denotethe submanifoldof 7?. consistingof
all points within supp(x). Here the completenessof P0 implies that N is a
compactsubmanifoldof 7?.. Formthe compactproductmanifold N x N and
considerwithin N x N the submanifoldX consistingof pairsof points (p1 ,P2)

with the property that Pi andP2 lie along a p0-geodesicbelongingto F, and
thatd~0(p1,p2)<2m. Now for each of the finite numberof homotopyclasses
representedin F, thereis a compactfamily of p0-geodesicsrepresentingthat
homotopyclass,and so we can concludethatX is compact.

Finally, we want to form a compactspacerepresentingall the arcsof curves
in F; to do this we needto accountfor therebeingtwo arcs in a curve in F
which haveendpointsrepresentedby (P1,P2) E X. To this end, consider for
eachof the finitely manyhomotopyclassesin F a given fixed orientation,then
we form the disjoint union X0 X U X so that the point (p~,P2) in the first
copy will correspondto the arc from Pi to P2 determinedby the orientationof
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the underlyingcurve ~eF and (p~,p
2) in the secondcopy will correspondto

the arc from Pi to P2 determinedby the oppositeorientationof the underlying
curve ~‘ e F. The set X0 is compact,as desired.

Now, for eachcurve y e F, we canconsiderthe lift ~‘ to a unit speedperiodic
extension ~‘ : 7?. where ~‘([0,2m)) covers the embeddedcurve ~ exactly
once.Then, becausethereare no non-trivial Jacobifields on ;‘, thereis a
so that thereare no non-trivial solutionsto the Jacobiequationwith vanishing
boundaryvalues for ~‘ on the interval [0.1] for I < 2m + ö(y). Since F is
compactandthe solutionsto the Jacobiequationvary smoothlywith the data,
we concludethat thereis ac~> 0 so that for all ;‘ e F, thereareno non-trivial
solutionsto the Jacobi equationwith vanishingboundaryvalues for ,) on the
interval [0,11 for! < 2m + 5.

Fromthis uniform non-degeneracyof the Jacobioperatoron boundaryvalue
problemswith data from X0 andthe smoothnessof po nearUYET~‘, the proofof
the Eells—Lemaireresultimplies that for every pair of pointsx0 = (Pi ,P2) e
thereis a T*(xo) and a neighborhood.A of x0 in Xo so that for ti < T*(xo)
andx e A’. there is a unique and differentiablefamily of arcs A1 which are
geodesicin the metric ,b~andhaveendpointsgiven by .v eA~C X0. Using the
compactnessof X0, we find a T* so that for ~ < T* andanypair of pointsp~,
P2 e y e F, there is a unique and differentiable family of ~,-geodesicarcs.4~
connectingPi andP2~Also, the compactnessof the family of arcsobtainedfor

ti < T*/2 togetherwith the result of the last paragraphguaranteesa T0 with
the samepropertyas T* abovebut with the additional property that theredo
not existany non-trivial 131-Jacobifields along any of the arcsA~for ti < To/2.

We are interestedin estimatingthe derivativesof the function lp,(.
41)~and

it is here that the final property of the arcs .4~described in the previous
paragraphbecomesimportant. We will needto know

i2/i~t2i,~l~(A
1) (3.8)

for all values c with id < F < T0/2. It is convenientto introduce here the
rectangularparameterspace (s,t) with s e [0, 11 and t E (—�,~). We think of
A1(s)of mapsfrom the parameterspaceto the manifold,giving us, for constant

t, the arc A1. In addition, A1(0) = Pi and A1(l) = P2 for all Ic (---F,F). The
secondvariation formula for length provides that (3.8) can be boundedin
termsof i~W~(s)ii~,where l4~.(s)= (0/0t)i1~A,(s) = A,~,i)/0t is the tangent
vectorin the surfaceshowingushow the geodesicsegmentsmove aswe change

t, and in terms of iiV~W~ii~,where ‘J~. = ~ ()/Ds is the tangentvector to
the geodesicarcs.We will now estimatethosequantities.

To begin we considera particular family A1 with endpoints (Pt ,P2) e X0
which is geodesicin the metric ~, and using a coordinatesystem (xi,x2)
in a neighborhoodof the ~~-geodesicA~,we computethe Christoffel symbols
F (t) = .l7~’(t) and find that for the conformal metric ~ we may define a
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symbol ‘P~(t)so that

T~j(t)= f~(c)+ ¶I~(t) (3.9)

where 9~’,~’(c) = 0. Moreover, since we can take j3~non-vanishingin a neigh-
borhoodof U~0~y which containsall of our arcs A1, iti < To/2, and h is

smooth,we seethat ~1~’~(t)is not only differentiablein t but is alsosmoothin
(xi,x2), for iti < To/2. Then the ,3~geodesicarc A1 satisfies

+ ]‘~(t)(At)i5(A1)i~= 0, (3.10)

whereeachcurve A1 : [0, 11 —* 7?. is parametrizedproportionallyto arc length.
We rewrite (3.10) as

+ f~(c)(A1)’5(A1)’~= ~~‘~(t) (A1)’5(A1)~~. (3.11)

Next we use W0(s) = (O/at)i10At(s) and then differentiate (3.11) in the
variablet at t = c. It is straightforward(andclassical)thatthe left handsideof
(3.11) differentiatesto give the JacobioperatorVTVTW + R(W,T)T where
we takethe covariantderivativesandcurvatureswith respectto the metric at
t = c, that is ,3~.To evaluatethe right handsideof (3.11), introducep0-Fermi
coordinatesalong the arc A~so that A0(s) = (Al,A~)= (l,3(A0)s,0) and
recall that 9~(c) = 0. Then we find that

- (d/dt)i10 [~ (t) (A~)’~(Al ~ = - [d/dt it=c~ (t)] [l~ (A0) ]2

~k(A(s)) [l~(A0)]
2 , (3.12)

wherethe last expressionindicatesa local functiondefinedalongthe arc A
0 (s).

We areleft with the vectorequation

J(W) = VTVTW + R(W,T)Y = ~P(A0(s))[l~(A0)I
2 . (3.13)

It is now convenientto introducethe vector field T
1 = T1/1111(A1),with unit

normalization:(J’1, T1)1/2 = (7 7~)1/2/ [I~~(A0) I = 1 (recall ~ = A1~O/i3s,and
s c [0, 1]). ThereforeEq. (3.13) is rewritten as:

VTV/TW+R(W,T)T=~1’(AC(s)). (3.14)

Now, by our choice of ici < T0/2, we know that there are no Jacobi fields

along A0. Thus the generaltheory of ordinary differential equations(cf. [H,
TheoremXII.3.ll) ensuresa boundKpi,ps;c so that the solution W =

of (3.14) with boundary conditions W5.1,p2c(p)=

14”p
1,p2c(P2) = 0 satisfies

{iI~,,p2cII~ I1VT,
14~,,p

2cii~}<I~pj,p2c/ ~ ds . (3.15)
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Now, the bounds~ aredeterminedby the coefficientsof the homogeneous
equationassociatedto (3.15), so after possibly replacing~ with ~
we concludethat for all pairs of pointsx = (q1,q2) e X0 near (P1,P2) C Xo

and t nearc, then

{i~:1ii~iIV~~o;tii~} ~ ~ (3.16)

Upon choosing a finite cover of Xo x [—To/2, T0/2] by neighborhoodsof
(x~.c1)e X0 x [—To/2,To/2I, we find the bound

W Pr / 1<
1 t~.’ T, ~ 0’

for all solutionsto (3.13) along j31-geodesicarcs A1, and for all t e [—T0/2.
T0/2].

We turn finally to using our estimate(3.17) to bound li,, (A) from below
for � sufficiently small, whereA0 is the portion of the minimal j)’,~-geodesic~

constructedat the outset of the argument.Because1j9, (As) is differentiablein
t, we havethe expansion

l~,(A0)= ‘po(’
40) + F~ [l~,(.4~)1+ 2d2~P,(~41)1 (3.18)

for somec e (0, �). In order to facilitate the evaluationof the derivativesit is

convenientto introducethe following functionof two variables:
l(t,w) = ‘hr (A,,,) =f ~tidzi . (3.19)

where the first variable t e [—T
0/2, To/2I labels the different metrics, and

the secondvariable w e [—To/2, To/2I the different arcs. Clearly we have
lb,(At) = l(t,t) and therefore we simply have that the terms entering Eq.
(3.18) aregiven by

~l(t,t) = ~l(t,w) + ~—l(t,w) , (3.20)
dt ii’=t

a
2 a a

= ~— I(t,w) + 2 l(t,w) + —~ l(t.w)
dt2 at2 w1 at dw ,,,~ 3~ii’

(3.21)

where we have usedthe fact that the partial derivativescommute.Consider
now the secondterm in the right handside of (3.20). It correspondsto a first
length variation for a family of curves; since the derivative is evaluatedat
w = t andthe correspondingcurveA

1 is a geodesicin the metric ~ this term
vanishesidentically for all t:

~l(t,w) ~0, forte [—e~~I . (3.22)
Ow w=1
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Taking a t derivativeof this equation,

~ ~ ~)= 0, forte [—�~�I , (3.23)

we obtain the following relation:

a a
= — —~.l(t,w) . (3.24)

ata~ 117=1

Using (3.22) and (3.24) , Eqs. (3.20) and (3.21) reduceto

i~(t,t)= ~32 = fhidz ~2 (3.25)

= ~.—~L’l(t,w) — ~—.~l(t,w) = —~-——-~.l(t,w)Wt 0,7=1 117=1

where we used (3.19) with ~3,= P0 + th, so that (a2/Ot2)~3,.= 0. We now
claim that

< 2K , (3.26)
13w

whereK is a boundindependentof the endpointsof the geodesicandof the
value of t c (—�,�). This follows becausethe above is precisely the second
length variation for a family of curves, evaluatedfor a basecurve which is
a geodesic.Using the standardformula (see Hicks [Hi, Ch. 10, Corollary, p.
1511)

1(A,)

= f da((R(W,T)W,T)
w=1 0

+ (VTW,VTW)— (T(r’V1T))2) , (3.27)

we see that the boundednessof curvature, togetherwith the uniform bounds
of Eq. (3.17) guaranteethe boundin (3.26).

Using Eqs. (3.25) and (3.26) we find that Eq. (3.18) gives

lb,(A1) >l~
0(A0)+fhldzl_K�2 . (3.28)

This inequality refers to an arc A0 C io running from Pi to P2 along Yo. There
is a similar inequality for the other subarcA’0 c Yo continuing along Yo from
P2 back to Pi (seeFig. 1). Adding the two we find

lb,(Yo)>Ip~(Yo)+fhidzi_2K�2�2m_2K�2 , (3.29)
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usinghypothesis(v) andthe fact that io is a saturatinggeodesic.
Thus. in the metric p, = ii,- + m1K�2y.for F sufficiently small, the shortest

curve ;‘~will havelength

‘~(;‘) = ‘b~(p

0) + m- ‘Kc
1Po (it)

> 2m — 2KF2 + m~KF2(2m) = 2m . (3.30)

wherewe have usedthat the admissibilityof P0 forces ~ (;‘~)� 2m and that

i
0 C supp,~.Thus p~is admissible.This concludesour proofof the lemma.LI.

Considernow a surfacewith a metric P0 of finite (reduced) area~
1(po).

The (reduced)areaA (P~) of the surfacewith the p, metric defined in (3.1)
is given by

A(p,) = .4(m) + 2� / hpodxdt’ + F2 J (2K~po+ /~2)d.vd,v

+ 2�3K/h~dxdv+ F4K2 /X2dxd.T. . (3.31)

This result is obvious whenthere are no puncturesand the A’s denote (or-
dinary) area. It holds when there are punctures,and we use reducedarea,

becausethe metric Pu is completeand thereforethe (compact) supportsof
h andx avoid some neighborhoodsof the punctures.The 0(�) and 0(F3)

termsaboveare necessarilyfinite, sinceboth Po and h are smooth over the
support of h. The 0(F2) and 0(�~)terms are also finite sincep~must be
squareintegrableover the support of x (otherwiseits (reduced) areawould

be infinite). Then, if the following inequality holds:

f hpodxdy<0 . (3.32)

we havethat A(p,) < ‘4(Po) for sufficiently small F. If Po and h satisfy the
conditionsof Lemma 3.1, the metric p, is admissiblefor sufficiently small F,

andthen (3.32) implies that Pu cannotbe of minimal area.We havetherefore
establishedthe following corollary:

Corollary 3.2. Given a metric P0 offinite (reduced)area anda smoothvariation
h satisfyingthe conditionsof Lemma 3.1, then f hpodxdy < 0 implies that
the metric P0 15 not ofminimal area.

Remark. Lemma 3.1 togetherwith Corollary 3.2 give a partial local converseto
Beurling’scriterion [AhI. In Beurling’scriterion a sufficient (but not necessary)
condition for extremal metrics is given. It involves showing that for any h
satisfyingcondition (v) one must alwaysbe able to prove that the right hand
sideof (3.32) is greateror equalto zero.Our resultis a partial conversebecause
we have shown that for suitableh andp Beurling’s condition is necessary.It
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is a local result becauseit tests locally whether the area of a metric can be

reduced.

4. Neighborhoodsof the punctures are flat

In this section,we discussthe geometryof the minimal areametric in neigh-
borhoodsof the puncturesof our puncturedRiemannsurface (7?.;pi
In particular,we will showthat theseneighborhoodsareisometricto flat cylin-
ders of circumference2m, foliated by a parallel family of geodesicsof length
2m.

The idea will be to apply Corollary 3.2 to the caseof a completeminimal
areametric which is smoothin the neighborhoodof apuncture.We showthat
if the metric is not flat, then it admits a deformationh (as in Lemma 3.1)
which lowers its area.

Theorem 4.1. Let P0 be a completeminimal area metric on a Riemannsurface
7?. with puncturesPt,.. . ,Pn. Supposethat eachpuncture P1 is containedin a
neighborhoodN

1 in which P0 is smooth and non-vanishing. Then there are
neighborhoodsV1 aroundp~in which Pu is isometric to a flat semi-infinite
cylinder ofcircumference2m.

Proof Consider a puncture p surroundedby a neighborhoodN in which Pu is
smooth andnon-vanishing.Lemma2.1 implies that thereis a neighborhood
V foliated by geodesicsof length 2m, each homotopicto the puncturep. We
claim that the leavesof the foliation areparallel,in the sensethat if i~(s) and
y1(a) are two distinct leavesof the foliation, thenmined~0(i1(s),i2(a)) =

mm5,01 d~0(it (s), i2 (a)). To arguefor this andthe conclusionof the theorem,
we work on the infinitesimal level, andconsider the leaves of the foliation
near a leaf y(O) as a variation of curves i(t). In particular, near i(O), we
parametrizeeachleaf i(t) by arclength“s” so that i(t) = y(s,t) andwe claim
that the variation field (3/8t)i(s,t) = V(s) is constantalong i(O,s).

To see this consider a point q c i(s,O) at which (a/as)ilV(s)Ii~0= cs ~ 0;
we will take rt < 0.

We seekamore convenientparametrizationof i (s,t). To this end, consider
the vector field X0(s,t) of p0-unit vectors which are perpendicularto the
curves i(t). Since the Pu metric is smooth,the vector field X(s,t) is smooth
and henceintegrable; let the integral curve normal to i(~O)at i(s,O) be
denotedby N(s).We nowparametrizei(s, t) so thatN(s) intersectsy(., t) at
y(s,t). Then, by Gauss’ lemma, i(s,t) is still a parametrizationby arclength
for each fixed t. We normalizethe parametrizationby taking q = i(O, 0) and
assumingthat the curve N(0) is parametrizedby arclengthby the variable
t (see Fig. 2). Consideringy(s,t) as a map from [0,2m] x (—�,�) to 7?. we
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‘((.,o) .(~,o) ~~1(0,O)

Fig. 2. We showa collectionof geodesicsy (, t) with t E [0, K]. Thegeodesicsareseento converge
becausethe variation field V(s) = (0/Ot)?(s,1) is not constant: (0/Os))V(s)) ~ 0 (at q). The
domainsR+ and R wherethe deformationof the metric is supported,are indicated.

set X(s,t) = ~ (a/at)i5,1then V(s) = X(s,0). While iiX(0, t)ii = 1 because
the curve N(0) is parametrizedby arclength,iiX(s, t)ii is not a priori of unit
length. At the point q we haveassumed(a/as)iiV(s)ii <0 (at s = 0).

Let F denotethe subarcof N (—m~)with endpoints~‘ (— m~,0) and ;‘ (—m~,ic)

and let F~denote the subarc of N(m7) with endpointsy(~,O)and ~‘(m~,ic).
Roughlyour plan is to exploit the fact thatthe lengthof F is biggerthanthatof
F+ sincethe norm of the variation field hasnegativederivative.Let R denote
the intersectionof the p0-neighborhoodof F of size 5 with Uo<l<K y(.,t). We
observethat since the leavesof the foliation are perpendicularto F_, then
R_ can also be describedas the union of arcsof the foliation of p0-length
2~centeredalong F. We similarly define R~as the intersectionof the Pu-
neighborhoodofF~of size ó with U0<t<K y(,t) (see Fig. 2).

Let k andk’ besmoothpositivefunctionssupportedon the intervals (—5,5)
and (0,K) respectively.Considerthen the smoothpositive function K :

~, definedas K(s,t) = k(s)k’(t). This function is compactlysupportedin
a rectangle. We useK to define the smooth (metric) h that we need;h will
be supportedon R U R~.For any point q with coordinates(s(q),t(q)) we
defineh by

h(q) = —p0K(s(q) + ~j, t(q) ) for q e R_,

h(q)= p0K(s(q)—m~,t(q)) forqeR~,

h(q) = 0, elsewhere . (4.1)

Considerthe metric i
3~= Pu + �h. Conditions (i)—(iv) of Lemma 3.1 are

satisfiedsowe now verify condition (v). For any saturatinggeodesici(t) one
shouldhave~ hidzi > 0; sincepoidzi is the length elementds we have
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I hldzi = I ~ds = [ h(s,t)d + [ h(s,t)d
J JPo J Pu J Pu

y(i) y(t) —~j—r5

= _f K(s + m~,t)ds+f K(s—~,t)ds

=—fK(s~t)ds+fK(s~t)ds=0 , (4.2)

thusour deformationpreciselypreservesthe lengthof the saturatinggeodesics.
Sinceh satisfiesall theconditionsof Lemma3.1 wecannowapplyCorollary 3.2
to show that the metric cannot be of minimal area. We must simply verify
that the quantity indicatedin (3.32) is negative:

ff hpodxdy= ff -~-dA(po)<0 . (4.3)
RuR~ R_uR.,.

The left handsideof the inequality is given explicitly by

K

I I h(s,t) 13 1)I I Pu P0 P0

0 —~~—ô

K 11+0

+ ff h(s,t) ~ ~ dsdt , (4.4)

0 ~j—O

since the (s,t) coordinate system is orthogonal. Using Ii’/~~/~siI~0=

(parametrizationis by arclength) and iIi~3/atIi~0= iiX(s,t)ii, we find that
(4.4) becomes

K—f f K(s + m~,t)

0 —17—0

K 77+0

+ f f K(s — m~,t) iIX(s, t)H dsdt , (4.5)
0 7—r5

andfinally, shifting the domainsof integrationwe obtain

_ffK(s~t)g(s~t)dsdt~ (4.6)
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where

g(s,t) = iX(~m/ + s,t)H - iiX(mi + s,t)[

Sinceg(0,0) = iiJ’(—’i)ii — [~(‘i)ii, and,by assumption. (i)//Js)HJ’(s)~i<0
for s = 0, for sufficiently small m~ one must have g(0,0) > 0. Since g is
continuous, it follows that it is positive throughoutthe region of integration
for sufficiently small d and ic. It is then clear that the above expressionis
strictly negative,as we wantedto show. This provesthat (3/Os)~r’(s)~i= 0.

at q E y(0) (correspondingto s = 0). Since this point is not a specialpoint.
it follows that (a//Js)iiV(s)[ = 0, for all points in the geodesic~‘(0). Since
the geodesic~‘(0) is not a special geodesic,we have (0/Ds)~X(s,t)~ = 0
along every leaf of the foliation. Since iiX(0,t)[ = 1. we have shown that

i~X(s,t) i~ = ii i~13/13th = I.
Finally, we considerthe map y(s, I) as a map from a flat cylinder C with

locally Euclideanmetric 7i = ds2 + dt2 to the neighborhoodV of the puncture
with metric po. The map )‘(s,t) is a (local) diffeomorphism, and so we
considerthe pullback metric ~‘(s.t)*p0 as a smooth metric on the cylinder C.
In comparingthe pullback metric )(s,I)*po with the flat metric ,)5, we first
notice that both ;‘. 0/Ds and ~ 13/0t are of unit p

0-length andorthogonalfor
all s and 1: we conclude that ;‘ (.c. t)*pO = ~ and so (J po) is isometric to a
flat annulus.This concludesthe proofof Theorem4.1. LI

Remark. Oneoften showsthat for extremallengthproblems,the neighborhoods
in which the metric is smooth must be flat (see Ref. [StI for example),
and it is common to use the length—area method in such arguments. Of
course,the length—areamethod requiresan analysisalong a neighborhoodof
an entiregeodesic;in the aboveargument,however,the analysiswas restricted
to a neighborhoodof a point, after requiring somesmoothnessand finiteness
propertiesof the neighborhoodof the geodesic.

5. Amputation and plumbing of minimal area surfaces

The purposeof the presentsection is to give a proof of the amputation
propertyof generalizedminimal areametricson puncturedsurfaces.This will

bedone in sectionSection 5.1. In Section 5.2 we will discuss,for completeness
of exposition,theplumbing of minimal areametrics. Expandingthe discussion
of Ref. [Zw2] we show that the plumbingof surfaceswith metricsof minimal
area,usingthe canonicalcoordinatesinducedby thesemetrics, induceson the
resultingsurfacea minimal areametric.

Before beginning our exposition let us establisha useful lower bound on
lengthsof nontrivial closed curves. Considera Riemannsurfacewith an ad-
missiblemetricanda ring domainF1 on the surfaceisometricto a flat cylinder
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(finite or semi-infinite)of circumference2n. This ring is foliated by saturating
geodesicshomotopic to its core curve. Denoteone of the boundariesof the
ring domain by C0, and let the curve C0 denotethe saturatinggeodesicat a

distanceô away from C0. Let Ch denotethe otherboundaryof the ring domain;
h is called the height of the cylinder (h = ~ if F1 is asemi-infinite cylinder).
We say that a nontrivial closed curve y penetratesF1 a distance 5 (5 < h)
if one can find two points P1,P2 e (i n C0) and an open subcurve~“ of y
with endpointsp1 andP2, fully containedin F1, such that y’ fl C0 ~ 0, and
i’flC77 = 0, for h > i~i> ô.

We saythata nontrivial closedcurve i extendsa distanceó in a ring domain
F1 (as above) if the curveis fully containedin F1, it is homotopic to the core
curvein the ring, and therearetwo uniquesaturatingcurvesC17 and C77+o in
F1 such that i n C77 ~ 0, and i n C77~0~ 0.

Lemma 5.1. Considera surface with an admissiblemetric and a nontrivial
closed curve i that penetratesa ring domain F1, isometricto a flat cylinder
ofcircumference2ir, a distance~. The length l(i) of the curve y satisfiesthe
inequality

l(i)> 2mVi~2/m2 . (5.1)

The same inequality holds for a nontrivial closed curve y which extendsa
distancec5 on F1.

Proof Considera curve i penetratingF1 a distancec5. Then the two pointsPi
and P2 determinea segment~iJj75~~on C0 homotopic to the subcurve~‘ lying
completelyon F1 whoseendpointsarePt andP2. Let d denotethe length on
the (extensionof the) flat metric on the cylinder of the segment1Ji75~.It is
clear from the flat geometryof the cylinder (see Fig. 3) that the length l(y’)
must exceedthat of the segmentj5~j7~by

l(i’) —l(~) ~e(d) � 2~2 + d
2/4 —d . (5.2)

Sincethe metric is admissibleandthe subcurvei’ is homotopicto the segment
j~j7~it follows that l(i) > 2m + e(d), where e(d) is the excess length

definedabove.The function e(d) can be readily checkedto be monotonically
decreasingin d. It will thereforeattain its minimum valuefor the maximum
possiblevalue of d, namely2m. We thenhave

l(i) � 2m + e(2~)= 2m ~1 + ó2/~2 . (5.3)

This is the desiredbound.The computationfor the caseof a curvethatextends
a distanceó in the flat cylinder F

1 is enterelyanalogous,andthe conclusionis
the same. LI
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Fig. 3. We show a curve y that penetratesa ring domain F, isometric to a flat cylinder of
circumference2or. a distance0. To the right we openup the flat annulusboundedby C

0 andc75.

5.1. Proof ofamputation

ConsiderapuncturedRiemannsurface7?. equippedwith acompletemetric Pu
smoothnearthe punctures,andsolving the generalizedminimal areaproblem.
We haveshown that aroundeach puncturep, thereis a neighborhoodwhere

the metric is that of a flat semi-infinite cylinder of circumference2m.
Let usnow usethis to find a canonicaldomain nearP~on which to perform

the amputation.Considerthe set U~= {p c 7?. i there exists exactly one
nontrivial curve ~‘,,, through p of length 27r. The curve ;‘~ is homotopicto Pl~
and Pu is smooth near i~}. Let U1 denote the connectedcomponentof U,’
which meetsevery neighborhoodof p1 the domain U1 is foliated by geodesics

homotopic to p,, and is conformally equivalentto the punctureddisk {iii <

l}. This disk U,, with metric Pu is isometricto a flat semi-infinite cylinder of
circumference2m foliated by saturatinggeodesicshomotopic to P1. It is the
maximal such cylinder aroundthe puncture.The saturatinggeodesicsare the
curvesof constant i~i.The disk U, is the canonical domain definedby the
minimal areametric.

From now on let us considera single puncturep, and its corresponding
maximal disk U (~ < 1). Define on U the coordinate I = log ~, and let
C0 with ~ e [O,DCIdenote the saturatinggeodesic ill = ~. The curve C0
is thereforethe boundaryof U, and ö measuresthe p0-distancebetweenC0
and C0. The curve C0 divides the surface7?. into two pieces:the subdiskU0
(~U — {~‘i > e

0}) and the amputatedsurface7?.~(~7?. —U
0). Finally we

define, for a fixed ô ~ 0 the “stub” S0 to be the annulusU — U0. Clearly
=

7?.o US
0 (seeFig. 4).

Theorem 5.2 (Amputation). Considera sumface7?. vi’ith a minimal area mnetric
Pu defining a canonicaldomain around a puncturep. Assume the amputated
surface7Zp has a minimal area metric p continuousin a neighborhoodof the
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< >Ug

~S5

Fig. 4. A minimal area metric complete and smooth near a puncturedeterminesa canonical
domain U aroundthe puncture.The boundaryof U is C

0. This canonicaldomain is isometric
to a flat semi-infinite cylinder. The curve C,~,a distance0 away from C0, divides thesurface 7~
into 7U and 11,5. Also indicated is the stubSo. The amputationtheoremrelatesthe minimal area
metric on the amputatedsurface7~to the original minimal areametric on ~R.

boundaryC0. Then p is the restriction ofPu to 7?.,5.

Proof Our proof will involve several steps. We will first assumethere is a
candidatemetric on the amputatedsurfacehaving lessarea. The obvious idea,
which is to use the candidatemetric on the amputatedsurface,togetherwith

the original metric on the remainderof 7?. to define an admissible metric
on the whole surface, doesnot work becausethe resulting metric would be
discontinuouson the cutting line and bad curves could appear.Nevertheless,
with a carefultreatmentof the neighborhoodof the cutting line we will succeed
in constructingan admissiblemetric on 7?. of lower areathat that of Pu.

We begin by assumingTheorem5.2 does not hold and there is another
metric p~on ‘R,5 continuouson a neighborhoodof C0, satisfyingall the length
conditionson 7?.ó andhavinglessareathanPu. Note thatPi ~ ~ where(0 is
a constant,since the lower areacondition would imply co < 1, and this would

makethe geodesicsin the stubS~shorterthan 2ir.
Our aim will be to construct, using Pu and p~a candidatemetric on 7?.~,

of arealower than Pu, which can be glued back to the cylinder representing
the puncturegiving an admissiblemetric on 7?.. This would be a contradiction
since it would show that Pu was not the minimal areametric on 7?.. Begin by
consideringthe family p~of metricson 7?.ó given by

= (1 —�)Po+ �p~, (5.4)

where0 < � < 1. It is not difficult to see that Pu iS an admissiblemetric on
7?.~(see the proofof Corollary 5.6 below), and,by hypothesis,the metric Pi
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is admissible,so, by linearity, we see that p1 is an admissiblemetric on 7Z~.
Let A0 andAt denote the area of 7?.~in the Pu and Pi metrics respectively.
We now calculatethe areaA0 of ‘R,5 using the metric p,. It follows from Eq.
(5.4) that

‘1

A0 = (1 —�)A0+ 2(1 —c)c d~p0p1+ e4~ . (5.5)

1~o

Since we know that Pi ~ copu (co a constant), the Schwarzinequality givesus

fd2~pupt = , (5.6)

with 4 > 0, sincethe Schwarzinequality is not saturated.It follows from Eqs.

(5.5) and (5.6) that

A0 = .
4o — flI~F + JflHF2 , (5.7)

wherethe constants ,8d and Jfl2~are both strictly positive andgiven by

~ = 2 (.4u(l — ~A
1/Au) + i) >0.

fi2~= (~ ~)2 + 24 >0 . (5.8)

It follows from Eq. (5.7), that for sufficiently small � the areaA, is strictly
smallerthan A0.

We will work throughoutwith the canonical local coordinatesdetermined
by the metric Pu; in thesecoordinatesp~= I on the cylinder. Consider a
neighborhood.A~(r)c 7?.ó of the boundary C0 consistingof all points in 7?~
whosep0-distanceto C0 is smallerthan r. Choosec,suchthat F 1/4 < 3; therefore

the neighborhood\r(~1/4) is containedin the stub So. Let the constantK be
definedby

l+Ko+ sup Pi . (5.9)
.‘o’(o 1/4)

where Pt is the value of the conformal factor in the flat local coordinates
definedby Pu. The constantK is boundedsince the candidatemetric Pi has
beenassumedto be continuouson a neighborhoodof C0 and therefore,for
sufficiently small � Eq. (5.9) definesa finite K. It follows from Eq. (5.4) that

5U~ p~= 1 + K� M(c) (5.10)
.‘C(o /4)

wherewe havedefinedM(�) for later convenience.
Let us seethat K > 0. If K < 0 then, Pt < 1 throughoutthe neigborhood,

but then it would not be admissible. If K = 0, then p’ ~ I in the full
neighborhood.Admissibility then requires ~‘ 1 and thereforePt = Pu in
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the neighborhood.The punctureddisk could be restoredat this stage,since
the metric is continuousalong the cutting curve, which is of length 27r, the
full metric is admissible,andof lower area.This is acontradiction.Therefore
K > 0, andbounded,is the only casewe needto consider.

Let us extend the definition of the metric Pt to 7?. by letting Pt = Pu on
U0. This metric is clearly discontinuouson 7?. andmay havebadcurves. We
quantify this possibility in the following lemma.

Lemma 5.3. Foranynontrivial closedcurvei on 7?., wehavel~(.‘) > 2ir( 1—K).

Proof Any curve fully on 7?.~or U0 clearly satisfies the inequality (in fact
they are both longer than 22t). The only problem are the curves that cross
C0. Divide such a curve i into two piecesYin, which is the part of i on 7?.~,
and iout, which is the part of i on Uo (out of the amputatedsurface).The
possibility that curvescan be shorterthan 2ir is due to the discontinuityof
the metric Pt acrossC0. The portion iout is madeof segmentsof lengthsb’,
wherethe index i labels the different segments.Eachsegmentis homotopic to
a segmenta1 on C0. The length of this segmenta1 E C0 dependson whether it

is takenwith respectto the metric Pt in 7?.~(the in-metric) or with respectto
the (extensionof the metric in ho to the) metric in ~ (the out-metric).Let
thoselengthsbe be denotedby a~or ~ respectively.

Since the maximum value of P1 in a neighborhoodof C0 lying on R0 is
(1 + K) (Eq. (5.9)), it follows that

< (1 + K) ~ so that ~ — ~ < Ka,~ut. (5.11)

We now havethat

lpi(Y) = ‘pi (Yin) + ~b’ � lpi(iin) + ~ , (5.12)

wherethe last inequality follows from b
1 > ~ which follows becauseon Uo

the metric Pt is thatof a flat cylinder, andthereforea segmentof a corecurve
(a~~~)is shorterthanany otherhomotopicopen curve betweenits endpoints.

Let us now considertwo cases.If ~ a~~
1> 2t, then the aboveequationtells

us we are done (the curve is longer than2ir). Let us now considerthe case
when >~a~~1< 2n~It follows from Eq. (5.12) that

lp1(i) � lp,,(Yin) + ~a(n — ~(a~ — a~~t). (5.13)

The first two terms in the right handside give the length of a closedcurve
entirely on 7?.,,~andof the samehomotopytypeas the original curve. SincePt
is admissibleon 7?.,5 thesetwo termsaddup to 2ir or more. For the last term
we useEq. (5.11), andfind

Ip,(i) �2ir—K~a~~~. (5.14)
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Since we are consideringthe casewhen ~ ~ < 2ir, the above inequality

reducesto l~,(~‘)> 2ir(l — K), which is the desiredstatement. LI

We now extendthe definition of p~to the full surface7?. by letting Po Pu
on U0. This is compatiblewith Eq. (5.4) andthe definition of Pi over 7?.. It is
now possibleto showthat mostcurvesaregood for the metric Po on 7?., where
we recall thata p0-goodcurve hasp0-lengthof at least 2m. This is the content
of the following Lemma:

Lemma 5.4. The metric Po in 7?. is admissiblefor all curves exceptfor those

complete/vcontainedin ~ t/3) U U0, and crossingthe boundarycurve C0.

Proof Nontrivial closed curvesare either homotopic to the punctureor are
not. Let us begin by showing that the curvesthat are not homotopic to the
punctureare alwaysgood. If such curve is completelycontainedin 7?.~it is
clearly good (see below Eq. (5.4)). Considerthen a curve ~‘ that extendsinto

U0 (seeFig. 4). Since it completelypenetratesthe stub So we have (Lemma
5.1)

‘po(~’) � 2~~l+ 3
2/m2 , (5.15)

andmoreover,‘P (~‘)> 2ir(l — K) (Lemma 5.3). Thereforethe equality

l~,(i) = (1 — ~)1po (i) + dpi (;) . (5.16)

leadsto the inequality

l~,(;‘)> (1 — �) 2m~l + 32/~2 + � 2~(l— K) . (5.17)

it follows that I,,,, (;‘) > 2ir if we have

(1— �)(~l + 32/~2 — 1)— Kc >0 . (5.18)

Taking � < 1/2, it is then sufficient to require

I 32
~/l + 32/~2— I > 2K� so that > K� + (Kc)2 . (5.19)
v — 4m2

This is easily satisfied.If (62/4j~2) < 1, we takeF < 62/8K~r2.Jf (32/4~2) > 1
it is sufficient to take � < 1/2K. This showsthatcurvesthatarenot homotopic
to the puncturecan be madeto have Po lengthsat least 27r by choosingF

sufficiently small.
Now considerthe curveshomotopic to the puncture.If they lie completely

on 7?.~or U
0 they aregood. By the statementof the lemmathe only curveswe

needto discussarethosethat go into the surfaceR.~beyond~V(�t/3) and also
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get into U0. We can easilygive an estimateof the length of such curve in the
Pu metric. Sinceit penetratesa foliation for a distance~h/3 we havethat

lpo(i) � 2~1 + �2/3/~2 , (5.20)

andusingour estimateon ~ (y), we find

lp,(Y) � (1 �)2~~f+ �2l3/~2 + �2~(l K) . (5.21)

Admissibility requiresthat (again � < 1/2)

2/3
~Ji+ �

213/ir2> 1 + 2K� so that ~— > K� + (K�)2 . (5.22)
— 4m2

Sincethe left handsideof the last inequality is less thanone,it is sufficientto
takeK� < �213/8m2,which just requires� < 1/(8ir2)3K3. Thus for sufficiently
small � we haveadmissibility. This concludesour proofof Lemma5.4. LI

We now needto improvethe metric Pr in order to get the remainingcurves
to havesufficient length. Thesearethe curvesthat crossthe boundaryC

0, and
on 7?.~do not extendbeyonda distance� t/3 of C0. Define now on 7?.ö a new
metric p0’ that is flat andconstantnearthe curveC0:

Po’ = Pr +.f�(r)(M(�)—p�) , (5.23)
whereM(�) was defined in (5.10), and r denotesp0-distanceto C0. Here
the function f,, is an interpolating function whose value is f0 (r) = 1 for
r < ~h/3, and f1(r) = 0 for r > �t14. For �h/3 < r < �t14, the function f0
is monotonicallydecreasingand continuous.Note that on .~V(�t/3) we have

= M(�) = 1 + K�, which is just a constant.On U0 we set the metric

Pu.

Lemma5.5. The metric p1’ is an admissiblemetric on 7?., and its area, for
sufficientlysmall �, is lower than that ofPu.

Proof The metric p~’is admissible on 7?. for the samecurves Po was, since
it differs from Pc by the addition of a term that is always positive. The
remainingcurves, namely thosethat extend over the two domains .Af(�t/

3)

and U
0 only, now clearly are p~-good.Since over all of ~‘f(� 1/3) the metric

Pr’ = 1 + K� > 1 = Pu, any closedcurve could only havegrown in sizewith
respectto its original total length in the Pu metric. Thus any such curvemust
be longer or equalto 2m. The improvementterm in Eq. (5.23) was necessary
to get this type of curvesto be p~-good.

Let us now calculate the area A’0 of the metric p~’on R0. It follows from
Eq. (5.23) that:

A’0 = A0 + 2fd2~Pofc(M(�) — Pr) + fd
2~fo2(M(�)— p

0)
2 . (5.24)
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Since supp(f0)cA[(�t1
4), we see that we need only estimatetheseintegral

over ~f(~h/4)~ In this region we havethe following inequalities:

~f(r)~l, p
0<l+K�,

M(�) Po <1 + Kc — (I—F) = (K + l)� . (5.25

wherein the last one, we haveused the fact that the lowestpossible value c

Pt is zero. We can now estimatethe integralsin Eq. (5.24) to find (fd
2~

2~rfdr)

A’
0 <A, + 4~(l + K�)(l + K)c

514 + 2~(I + K)2F914 . (5.26

Taking K� < 1, namely � < I/K andusingEq. (5.7), we have

A’
0 <Au — fli~�+ + ~ 2 + K~F

914 . (5.27

where tjl = 8~r(1+ K) and K~= 27r(l + K)2. It is clear from Eq. (5.27) tha
for sufficiently small � the areaof Po’ on 7?.ó is lower than that of Pu Ofl 7?,~,
The sameis thereforetrue for the areaon the whole surface7?. This conclude
our proofof Lemma 5.5. E

Having establishedLemma5.5, the existenceof a metric Pt of lesserare~
than Pu on 7?.o hasenabledus to constructan admissiblemetric on 7? of are~
lower than that of the minimal areametric Pu. This contradictionestablishe
that the restrictionof Pu is indeedthe minimal areametric on the amputate
surface7?.~.This concludesour proof of Theorem5.2.

5.2. Plumbingminimnalarea mnetrics

We concludethis sectionby describingthe minimal areametric on a surfac
obtainedby the conformal plumbing of surfaceswhich admit minimal are~
metricswhich are smoothandcompletenearthe appropriatepunctures.Wha
follows is a detailedexpositionof the ideasbriefly sketchedin Ref. [Zw2 I.

To begin, we recall from the introduction that the processof conforma
plumbing begins either with a surface7?.u with at least a pair of punctures
or two surfaces7Z~and izg eachwith at least one puncture. In the first case~
say,we considersmall neighborhoodsU

1117 = {~t I ~ < t~}and U111,2 = fc21

~2I < ItI} of the puncturesPt andP2 (respectively)and then, for tI < F, we
form the (complex) identification space7?.,, = (lZu — (U,,~U U,2))/(c~t~2= t).
The space7?., is a Riemannsurfaceof genusone more than the genusof l?.~
but with two fewer punctures,and is said to be the result of the conformal
plumbingof 7?.u. A similaroperationforms, from 7?.~andR~,a new surface7?.~
with genusthe sumof the generaof 7?~and 7?.~andwith two fewer punctures
than the total of thoseon R~and7?.’o’.
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We now describe the minimal area metric on 7?.,, in terms of the minimal
areametric on 7?.o; the caseof the minimal areametric on 7?.~is analogous.So
let Po be the minimal areametric hypothesizedthroughoutthis paper;if Pu is
smoothandcompletenearthe puncturesPt andP2, thenwe haveseenthat Pu
is flat in someneighborhoodof p andfoliated thereby geodesicsof length 2ir.

We performourplumbingusingthe canonicaldomainU1 aroundthe puncture

P1, definedby the minimal areametric (see our discussionat the beginningof
Section5.1). The domain U1 is foliated by geodesicshomotopic to P1, and is
conformallyequivalentto the punctureddisk {I~~I< l}. We takeU111,1 to be the
domain parametrizedby the subdiskU111,1 = {I~1I < ItI} (note a small change
in notation from Section 5.1).

Next we form, as above, the identification space 1?.,, = — (Ui,,i,i U

Ui,,i,2)/ (~t~2= t). Now, the surface‘R1 admits the alternativedescription as
the smooth surface obtainedby gluing together the ends of 7?~=

7?.o —

(UItII/2i UU
111l/2,2) correspondingto Pt andP2, the gluing taking placealongthe

curves 1
4’ti = Iti t/2 and i~2I= ti t/2 andthe identificationbeing madeso that

~t~2 = t alongthe seamF = {i~ii = ti t/2 = ~ ~}. We observethat the curves
I~iI= t~t/2 and I~2I= ~ t/2 are geodesicsin the metric Pu which is flat near
the seam, so that the restriction of the metric Pu to l?.o — (U]

111/2,t U U111112,2)
extendsto a smoothmetric Po,t on 7?.,, which is flat nearthe seam.

Corollary 5.6. For ti <e_
27r, the plumbedsurface 7?.,, admits a minimal area

metric Pt andp~= Put.

Proof We first observe thatPo,t is a candidatemetric on 7?.,,. This is clear once
we considerthe homotopicallynon-trivial curves on 7?.~.If ~ is such a curve
theneither y meetsthe seamF or it does not. If y does not meetF, then
we may take y to be a curve on 7?.~.Moreover, this curve ~ ~ 7?.~must be
non-trivial, andhencehavelengthat least2m: if y is trivial in l?.o it mustbound
adisk D C ~~o;but then D is containedin

7?cu~since D cannot contain the
puncturesandy = 13D doesnot meetthe seamF. In that caseactuallyD c 1?.~
andy would be trivial in 7?.,,, in contradictionwith the initial assumptionthat
y was nontrivial. If y meetsthe seamF andone of the arcs{i~~i= l}, then
~‘ must either crossthe union of the domains{I~tI� t~t12} U {I~2I ? ti 1/2} or
oneof thosesubdomainstwice, in either caseacquiringa Po,t lengthof at least
2m, as long as ti < e

2~r.If ~‘ meetsthe seamF but is properly containedin
a neighborhoodof the seamof size ~r,theny mustbe homotopic to the seam,
andoneseeseasily that sucha curve hasa length of at least the length of F,
or 22r.

Next we seethat pu,t hasleastareaamongadmissiblemetriceson 7?.,. From
Theorem5.2 (Amputation),we see that Po,t is the minimal areametric on
l?.~t Then, if there werean admissiblemetric p, on 7?., with lower areathanPu,
thenthe metric Pt would restrictto be a metric on 7?.~ttof arealower than Pot.
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Yet the metric p, would still be admissiblefor the minimal areaproblem on
l?.~utsinceany homotopically non-trivial curve ~‘ on 7?~°is a nontrivial curve
on 7?.,. To see this, either use Van Kampen’s theorem,or more concretely,
suppose~‘ is trivial in 7?,,, then it boundsa disk D e R,,: since ;‘ does not
meet F on 7?~ut(this is easily arrangedby a small deformation) either F is
fully containedin D or it is completelydisjoint from D. However, F cannot
be containedin D, since F is a nontrivial curve, thereforeD is a properdisk
in ~ and this implies that ~‘ is trivial in 7?~utin contradictionwith the

assumptionthat it was a nontrivial curve. Thus the metric p,, would be both
admissibleand of arealower than Pu,t on l?~t. This contradictionshowsthat
Pu.t is of minimal areaon 7?~,concluding the argument. LI

Remark 5.7. This corollary provides for the existence of solutions to the
minimal areaproblemfor surfacesof higher genususing minimal areametrics
of lowergenusthroughthe processof plumbing.The resultingRiemannsurfaces
correspondto a deletedneighborhoodof the compactificationdivisor of ~

We label the remaining surfacesVg,n. The effect of our considerations(see
Ref. [Zw5]) is that one can characterizeV~,0as consistingof thoseRiemann
surfaces7? for which the minimal areametric doesnot havea cylinder foliated
by a family of homotopicsaturatingsimplegeodesics,so that the cylinder has
a height exceeding2m.

For example, it was shown in Ref. [Zwl I that the minimal area problem
was solvablefor all puncturedspheres7? = S

2—{p~ pn}, the solution being
given as the norm of a holomorphicJenkins—Strebelquadraticdifferential on
7?.. This corollary then providesfor the existenceof solutionsto the minimal
areaproblemof surfacesobtainedby the plumbingof a numberof punctured
spheres.Of course,in this particularcaseone seesthat thesesolutionsarealso
given by Jenkins—Strebelquadraticdifferentials.

6. Minimal area metrics not arising from quadratic differentials

In this section we will give an exampleof a minimal areametric solving
the generalizedminimal area problem. The unusual aspectof this minimal
area metric is that it does not arise from a quadratic differential. This will
be manifestsincewe will get negativecurvaturesingularitiescorrespondingto
an excessangleof m/2. In quadraticdifferentials the excess(or defect) angle
must be an integermultiple of it (an nth orderzerocorrespondingto an excess
angle of nit). Moreoverthe patternof foliations by geodesicsof lengths 2m is
also novel. For a minimal areametric arising from a Jenkins—Strebelquadratic
differentials one can always take the horizontal trajectoriesof the differential
to define the foliating geodesics.Then the surfaceis completely foliated by
geodesicsthat do not intersect (geodesicsovelap along the critical graph of
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Fig. 5. A genusfive surface7~with a minimal area metric that doesnot arise from a quadratic
differential is built by joining togethertwo tori, eachwith four boundaries,usingfour short tubes.
(a) A torus T (or Y’): the edgesof the squaredomain are identifiedand the four squareholes
arethe boundaries.(b) The patternof foliations that are completelycontainedin T (or Y’). (c)
A partial view of the foliations that extendboth in Y and T’.

the quadraticdifferential, this graph, of course, has zero measure). In the
exampleto be discussedit is not possibleto coverthe surfacewith saturating
geodesicsthat do not intersect.This is probably the crucial feature of all the
metricssolving the generalizedminimal areaproblemwhich do not arisefrom
quadratic differentials.

Let us now describethe surfaceandits metric. The surfacewill turn out to
be a genusfive surface7?. with no punctures.It will be constructedby gluing
togethertwo identical tori ~Tand T’ eachwith four boundaries.Eachtorus
with boundariesis given by a 2ir by 2m squareregion in the z plane,with the
natural flat metric Po = 1 on it, andwith oppositeedgesidentified to give a
torus.We cut four squareholeson eachtorus,eachsquareof perimeter2ir and
symmetricallycentered,as shownin Fig. 5a.Theseare thefour boundaries.The
tori T and Y’ are joined by four short flat tubesC1 (not shown in the figure)
attachedto the boundarycomponents.Eachtube is a cylinder of circumference
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2ir andheight it/2. Note thatat the cornersof the squareholesthe metric Pu
hascurvaturesingularitieswith an excessangleof it/2.

Let us verify that the metric is admissible.All nontrivial curveshomotopic
to curves lying completely in T or T’ aregood becausethey are longer than or
havelengthsequalto somehomotopiccurve lying completelyin T (or T’) and
such curvesare manifestlygood. Curveshomotopic to a core curvein one of
the short tubesalsobelongto thisclass.We alsoneedto considersimpleclosed
Jordancurvesgoing from T to T’. Thesecurvesmust travel along the tubesan

evennumberof times. Since the tubeshaveheight it/2 the only casewe need
to consider is that of curvesgoing acrosstwo times, thus acquiringat least
length it. Supposethey go up anddown the sametube. If we delete the two
segmentsgoing up anddown the tubewe obtain two open curves.Eachcurve
is longer than or equal to an opencurve of the samehomotopytype that does
not enter the tube in questionagain. Considerthose open curves, which are
definedon 7?-(tube).At least one of them shouldbe a nontrivial open curve
sinceotherwisethe original closedcurveis either trivial or homotopicto a core
curve in the tube. A nontrivial open curve, however,mustbe larger than 3it/2
(check the figure). Thus we exceedthe necessarylength. The only curvesleft
to considerare thosethat meettwo different tubes.Sincethe distancebetween
the different boundarycomponentsin T andT’ is m/2 the curve mustgain an
extra it of length, and thereforemustbe good.

Before showing the metric is of minimal arealet us describethe pattern
of foliations. Theseare indicated in the figure and are of three types. The
first type is foliations lying completely in T or in T’. There are four bandsof

foliations andthey cross,coveringT (or T’) oncein someregionsandtwice in
others(Fig. Sb). The secondtype of foliations are thoseextendingboth in T
andT’. They are indicatedin Fig. Sc andthe geodesicsgo from one boundary
componentin T to another,then up the tube to TI, then to anotherboundary
componentin T’ and then down the tube to T. Such curveshave length 2it.
They extendover the regionsofT and T’ wherethe first type of foliations gave

a singlecovering.They also coverthe tubesonce.Thereareeight bandsof this
type. The third type of foliations are thosewhosegeodesicsare homotopicto
the core curvesin the tubes,thereare four suchbands,one in eachtube (not
shown in the figure). The threetypes of foliations put togethergive a double
coveringof the completesurface1?..

Let usnow prove thatthe metric is of minimal area.Beurling’s criterion (see
Ref. [Ah]) appliedto our problem saysthat a metric Pu solves the generalized
minimal areaproblem if it is admissibleand thereis a family of nontrivial
closedcurvesF0 such that ‘Po (y) = 2ir for all ~‘ E F0, and for any real valued
h in 7?. such that

fhIdzI>o (6.1)
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for all ‘ ~ F0, we havethat

ffh~odxd~�0 . (6.2)

Let usshow our metric on 7?. satisfiesthis criterion. Thefamily F0 consistsof
the threetypesof foliations discussedabove.Each foliation covers a annular
region 7Z~of the surface, isometric to a flat strip of length 2it with edges
identified. Put rectangularcoordinatesx,y on eachstrip, andlet the geodesics
correspondto the constantx lines. It then follows from (6.1) that

fdyfdxh>0. andso ffhPudxdy�0 , (6.3)

since Pu = 1. Adding over all foliations we obtain

>ffhPodxdY = 2ff hpudxdy>0 , (6.4)

sinceall foliationstogethergive a doublecoveringof the surface.Thisconcludes
our proof that the metric Pu in 7?. is of minimal area.

Remark. Thereis an interestingoneparameterdeformationof the abovemetric
[Ro]. We canvary the heightsof the short tubescontinuouslybut in doing so
we mustkeepthe heightsof diametricallyoppositetubesequal,andthe sumof
heightsof neighboringtubesequalto it. All thesemetrics areof minimal area.
The endpoint of this deformation is a configurationwhere two of the tubes

collapseandthe other two tubesbecomeof height it each.This metric does
not arisefrom a quadraticdifferentialnor we can cut the tubesandstill have
a minimal areametric. (Hadthe tubesbeenlonger than2it we could havecut

themandobtain a minimal areametric.)
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